The Europe, CIS & Africa spatial transcriptomics market was valued at approximately USD 93.9 million in 2023 and is expected to experience robust growth, with a projected compound annual growth rate (CAGR) of 15.57% from 2024 to 2030. Several key factors are contributing to this growth, including the increasing recognition of spatial omics analysis in cancer research, the introduction of fourth-generation sequencing technologies (such as in-situ sequencing), and a surge in funding and collaborative initiatives aimed at advancing spatial biology research.

A primary driver behind the market expansion is the rising prevalence of cancer. As cancer rates continue to climb, there is an increasing demand for more effective approaches to biomarker discovery, early detection, and precise diagnostics. These advancements are critical for better disease management and more targeted treatment options. Spatial omics analysis, particularly in the field of oncology, has shown considerable promise in addressing these needs. It offers a more nuanced understanding of tumor heterogeneity, supports the identification of potential biomarkers, and helps inform personalized treatment strategies that can be tailored to individual patients.

One of the major advantages of spatial omics technologies is their ability to map the spatial distribution of various cell types within a tumor. This feature is vital for studying the heterogeneity of tumors, which can significantly affect treatment outcomes. A relevant example of this is a study published in Nature in May 2024, where researchers employed both spatial and single-cell transcriptomics to explore the molecular interactions and tumor heterogeneity in colorectal cancer (CRC). By using these advanced techniques, the researchers were able to gain deeper insights into the underlying mechanisms driving CRC progression, showcasing the potential of spatial transcriptomics in improving our understanding of complex diseases like cancer.

Gather more insights about the market drivers, restrains and growth of the Europe, Cis & Africa Spatial Transcriptomics Market

Country Insights

Europe led the spatial transcriptomics market in 2023, commanding a dominant share of 94.57%. This dominance can be attributed to the region's well-established biotechnology research and development (R&D) sector, its growing emphasis on spatial biology, and the presence of leading industry players. Additionally, substantial investments and funding from both public and private entities have significantly contributed to advancing spatial transcriptomics research and facilitating the commercialization of spatial omics products, further driving market growth.

United Kingdom (UK):

The spatial transcriptomics market in the UK is anticipated to experience significant growth in the coming years. This is largely due to the continuous technological advancements in spatial biology, which are increasingly being applied across various fields such as oncology, neurology, and personalized medicine. A key example of the UK's role in fostering innovation is the 12th Annual Single Cell & Spatial Analysis UK Congress, part of Next Gen Omics 2024, scheduled for October 23-25, 2024, in London. This prominent event will bring together leading experts from around the world to discuss the latest developments, cutting-edge technologies, and future prospects of spatial biology, underscoring the UK's position as a hub for research and innovation in the field.

Germany:

Germany's spatial transcriptomics market is experiencing significant growth, particularly within the broader multi-omics field. The country benefits from active engagement by renowned academic institutions, leading biotechnology and pharmaceutical companies, and substantial government-backed research funding. For example, in early 2024, the European Molecular Biology Laboratory (EMBL) hosted a series of events and training courses, focusing on integrating and analyzing multiomics data, further enhancing the country's position in spatial transcriptomics and related fields.

France:

In France, the spatial transcriptomics market is also set to witness strong growth, driven by the increasing adoption of advanced genomic technologies and their expanding applications across diverse fields such as cancer research, drug discovery, and translational research. Moreover, the French government’s continued investment in genomic research initiatives is providing a solid foundation for the market’s development, fostering both innovation and collaboration in the space.

Commonwealth of Independent States (CIS) Market Trends

The CIS region, which includes countries such as Russia, Ukraine, Belarus, and Kazakhstan, is expected to see growth in the spatial transcriptomics market. This growth is largely fueled by an increased adoption of advanced genomics and transcriptomics technologies, a growing focus on spatial biology research, and rising demand for more detailed insights into cellular function and organization. These CIS countries are home to several well-established research institutions and academic centers with deep expertise in molecular biology and biotechnology, providing a strong foundation for growth in spatial transcriptomics research and applications.

Africa Spatial Transcriptomics Market Trends

South Africa is expected to experience significant growth in the spatial transcriptomics market, driven by an increased demand for improved diagnostic tools that support disease prevention and treatment. The country’s growing healthcare sector, combined with ongoing advancements in genomic technologies, creates a promising landscape for the adoption of spatial transcriptomics.

In contrast, the Nigerian market for spatial transcriptomics remains in its early stages. While there is potential for growth, the market faces challenges due to the high costs associated with specialized equipment and reagents. Additionally, the need for skilled labor to operate these advanced technologies represents another potential barrier to rapid market development. As such, significant investment in infrastructure, training, and research capacity will be necessary to accelerate market growth in Nigeria and other parts of West Africa.

Browse through Grand View Research's Biotechnology Industry Research Reports.

• The global exosomes market size was estimated at USD 177.4 million in 2024 and is anticipated to grow at a CAGR of 28.73% from 2025 to 2030. 

• The global cell culture media storage containers market size was estimated at USD 2.11 billion in 2024 and is projected to witness a CAGR of 12.55% from 2025 to 2030. 

Key Europe, CIS & Africa Spatial Transcriptomics Company Insights

Several key players in the spatial transcriptomics market are actively pursuing strategies to strengthen their market presence and expand the reach of their products and services. These strategies primarily include expansion activities and strategic partnerships aimed at advancing research, increasing the commercialization of spatial omics products, and enhancing collaborations between academia and industry. Through these initiatives, companies are not only boosting their market footprint but are also contributing to the broader advancement of spatial biology and transcriptomics technologies.

Key Europe, CIS & Africa Spatial Transcriptomics Companies:

• Illumina, Inc.

• Bruker

• 10X Genomics

• EdenRoc Sciences (Cantata Bio, LLC)

• Shimadzu Corporation

• Waters Corporation

• Bio-Techne

• Vizgen Inc.

• Spatial Genomics

• Akoya Biosciences, Inc

Order a free sample PDF of the Europe, Cis & Africa Spatial Transcriptomics Market Intelligence Study, published by Grand View Research.