The visible light range scientific camera market size is projected to reach USD 0.6 billion by 2028 from USD 0.4 billion in 2023; it is expected to grow at a CAGR of 7.9% from 2023 to 2028.

A scientific camera is essential for any imaging system. These cameras are designed to quantitatively measure how many photons hit the camera sensor and in which location. The visible light range scientific camera market, by type, has been segmented into sCMOS, sCMOS (Backthinned), CCD, CCD (Backthinned), and EM-CCD cameras. The different cameras and their various architectures have inherent strengths and weaknesses and these are covered in depth in this chapter. The spectral response of a camera refers to the detected signal response as a function of the wavelength of light. This parameter is often expressed in terms of the quantum efficiency (hereinafter in this document referred to as QE), a measure of the detector's ability to produce an electronic charge as a percentage of the total number of incident photons that are detected. The sensitivity of a camera is the minimum light signal that can be detected and by convention, we equate that to the light level falling on the camera that produces a signal just equal to the camera's noise. Hence, the noise of a camera sets an ultimate limit on the camera sensitivity.

Download PDF Brochure:

https://www.marketsandmarkets.com/pdfdownloadNew.asp?id=56112263

sCMOS type segment will continue to hold largest visible light range scientific camera market share during the forecast period
In recent years, there has also been an observable shift in the preference for sCMOS sensors over CCD sensors. sCMOS cameras have an updated technology than CCD cameras, which is increasing their popularity and acceptance in the market. sCMOS technology overcomes the trade-offs that are associated with conventional CMOS cameras. Unlike previous generations of CMOS and CCD-based sensors, sCMOS offers rapid frame rates, extremely low noise, large field of view. wide dynamic range, and high resolution. sCMOS has dual amplifiers and dual analog-to-digital converter readout, which leads to a high dynamic range. A low-gain channel and a high-gain channel are read simultaneously, and the information is combined. This produces an exceptional dynamic range. In 2009, scientific CMOS (sCMOS) technology was launched, with sCMOS cameras being commercially available from 2010 to 2011. sCMOS cameras can provide low noise, high speed, and a large field of view, making sCMOS cameras ideal for a wide range of applications, from astronomy to microscopy.

The visible light range scientific camera market in APAC is expected to grow at highest CAGR during the forecast period (2023-2028)
China is expected to offer significant opportunities for visible light range scientific camera manufacturers during the forecast period. The high growth in these markets can be attributed to the high demand for advanced technologies in this region. With developed economies reaching saturation, manufacturers, and suppliers are expected to focus on opportunities in the emerging Chinese market, supporting market growth in the coming years. Healthcare authorities in China are encouraging the private sector to build healthcare facilities by relaxing various policy controls. Improvements in the country’s healthcare infrastructure will serve to attract global medical device companies, including companies providing visible light range scientific cameras. Furthermore, technological advancements in the country are also supporting the growth of the visible light range scientific camera industry.

The visible light range scientific camera companies operating in the market are Hamamatsu Photonics (Japan), Teledyne Technologies (US), Thorlabs, Inc. (US), XIMEA GmbH (Germany), Photonic Science (UK), Excelitas PCO GmbH (PCO-TECH Inc.) (Germany), Oxford Instruments (Andor Technology) (UK), Atik Cameras (UK), Diffraction Limited (Canada), and Spectral Instruments, Inc. (US).